Author Topic: Is this too much IDY ?  (Read 1760 times)

0 Members and 1 Guest are viewing this topic.

Offline mkevenson

  • Lifetime Member
  • *
  • Posts: 2330
  • Age: 63
  • Location: Santa Rosa, Ca
  • Roos! Protector of Fowl
Re: Is this too much IDY ?
« Reply #20 on: March 17, 2013, 06:54:09 PM »
Hi Mark: Thanks!  The info age has its definite good points for sure but I prefer the discovery/apprentice way of learning.  Your pies look great and are better than most in Santa Rosa I bet! Do you know Gio's in Santa Rosa?  If you ever go by there ask for Ana and tell her Walter and Judy say hi from Ohio.  She is a Mexican girl(woman now) that we took in when she was 11.  She told us she is tossing pizzas there.  Walter

I have not been to Geo's but will look for it and Anna.

Mark
"Gettin' better all the time" Beatles


Offline Pete-zza

  • Lifetime Member
  • Global Moderator
  • *
  • Posts: 22072
  • Location: Texas
  • Always learning
Re: Is this too much IDY ?
« Reply #21 on: March 17, 2013, 10:27:31 PM »
Mark,

I essentially agree with what Tom (Tscarborough) and Chau have said about finished dough temperature. Finished dough temperatures can be used for both cold fermentation applications and ambient temperature applications, but finished dough temperature is usually associated more with commercial uses where it is important that the dough balls be ready when the pizza operator needs to use them to make pizza. Some time ago, I discussed some of the practical effects of finished dough temperatures in commercial settings in the first paragraph of Reply 2 at http://www.pizzamaking.com/forum/index.php/topic,4747.msg40332.html#msg40332. Walter is also correct that it is frequently necessary to tweak dough formulations and finished dough temperatures to adapt to changing environmental conditions, such as seasonal changes.

However, what has not been said is why the usual recommended finished dough temperature is around 80-85 degrees F. As best I can tell, the reason is that temperatures in that range produce the optimum multiplication of the yeast and optimum fermentation. This can be seen in Table 4 at http://www.theartisan.net/dough_fermentation_and_temperature.htm. The 80-85 degrees F number that Tom Lehmann talks about is usually in the context of a commercial operation, for example, for a cold fermentation application, but it could also be used in an ambient temperature application. But, as Chau noted, in fairly short order the finished dough temperature will approach the ambient temperature. In your case, the finished dough temperature will approach the temperature of your cooler. So, its value is important if you want to achieve consistent results even in a home setting. I might add that the finished dough temperature number that is most often mentioned for a home setting is 75-80 degrees F. The reason for the lower range is because a typical home refrigerator runs several degrees warmer than a commercial cooler, as Norma mentioned.

With respect to a formula or equation into which you might enter fermentation temperatures and durations and be handed the amount of yeast to be used, I am not aware of any such formula or equation. However, there is a method that member November devised that allows one to do something similar, and can be used for a formulation such as you are now using. But to use his method, which is described in Reply 6 at http://www.pizzamaking.com/forum/index.php/topic,5028.msg42572.html#msg42572 and elsewhere in the same thread, you need to first conduct an experiment using your dough formulation. To do that, you would make your dough in the usual manner, with whatever amount of yeast you elect to use, note the finished dough temperature, and let the dough ferment at a specified temperature (in your case, the temperature of your cooler), and note the elapsed time for the dough to achieve a particular desired condition, such as the doubling of the volume of the dough (it can be more or less if you want). From that information, you can use a standard online scientific calculator, such as the one shown at http://www.eeweb.com/toolbox/calculator to calculate the Reference Rate. Once you have that number, you can change either or both of the fermentation temperature and fermentation duration, and use the method described by November to calculate the amount of yeast that applies to those values. Your example is simple because you are not using a series of temperature/time protocols as is discussed in Reply 6 referenced above. However, for future doughs using the new amounts of yeast, you will want to strive for the same finished dough temperature that you used to achieve the Reference Rate. So, for you in this case, the finished dough temperature is an important number.

As you might imagine, most people are unlikely to go through the above exercise. In most cases, they will find it easier to just do the yeast changes in an iterative manner until the desired results are achieved.

Turning now to your particular dough formulation, it appears the nominal protein content of your flour is 11.7%. Using member Novemberís Mixed Mass Percentage Calculator at http://foodsim.unclesalmon.com/, I calculate that the addition of 2% vital wheat gluten will produce a final blend with a protein content of 12.77%. With the addition of the vital wheat gluten (about 1 1/3 teaspoons), the hydration will be lowered to 61.8% but, unless you add one to one-and-a-half times the weight of the vital wheat gluten in additional water, the dough might feel somewhat less hydrated and on the dry side.

Using the expanded dough calculating tool with the 340-gram dough ball weight that you mentioned, your dough formulation looks like this from a bakerís percent standpoint:

Flour (100%):
Water (63%):
IDY (0.20%):
Salt (2%):
Vegetable (Soybean) Oil (3.5%):
Vital Wheat Gluten (2%):
Total (170.7%):
199.18 g  |  7.03 oz | 0.44 lbs
125.48 g  |  4.43 oz | 0.28 lbs
0.4 g | 0.01 oz | 0 lbs | 0.13 tsp | 0.04 tbsp
3.98 g | 0.14 oz | 0.01 lbs | 0.71 tsp | 0.24 tbsp
6.97 g | 0.25 oz | 0.02 lbs | 1.53 tsp | 0.51 tbsp
3.98 g | 0.14 oz | 0.01 lbs | 1.33 tsp | 0.44 tbsp
340 g | 11.99 oz | 0.75 lbs | TF = N/A

Apart from adjusting the hydration of the dough as mentioned above to compensate for the effects of the vital wheat gluten, I think it is too early to offer any further suggestions. Small amounts of yeast and large amounts of oil can peacefully coexist but you may end up with a somewhat reduced oven spring. Judging from the photos you showed, you appear to be getting enough sugars from conversion of the damaged starch to feed the yeast, without the need to add table sugar to your dough. Usually, one needs to add either sugar of diastatic malt when using unmalted flours to be sure that the yeast is adequately fed and that there are sufficient residual sugars available at the time of baking to produce good coloration of the crust.

Peter

Offline mkevenson

  • Lifetime Member
  • *
  • Posts: 2330
  • Age: 63
  • Location: Santa Rosa, Ca
  • Roos! Protector of Fowl
Re: Is this too much IDY ?
« Reply #22 on: March 17, 2013, 11:15:38 PM »
Peter, 100 thanks to you for your efforts to organize this reply. It will take some time for me to digest the contents. Your help in all matters pizza formulation are priceless. I am honored to be the recipient of such knowledge.


Mark
"Gettin' better all the time" Beatles

Offline Pete-zza

  • Lifetime Member
  • Global Moderator
  • *
  • Posts: 22072
  • Location: Texas
  • Always learning
Re: Is this too much IDY ?
« Reply #23 on: March 18, 2013, 09:09:45 AM »
Peter, 100 thanks to you for your efforts to organize this reply. It will take some time for me to digest the contents. Your help in all matters pizza formulation are priceless. I am honored to be the recipient of such knowledge.

Mark,

Thank you very much for the kind words but they really weren't necessary. I just hope that you get the results you are looking for.

I forgot to mention in my last post that you can use the poppy seed trick if you decide to conduct another experiment with your dough to determine the Reference Rate that I discussed. As I mentioned, your case is a fairly simple one since you would only using basically one fermentation value (within a range of 55-59 degrees F) and a duration of fermentation that would corespond to the desired condition of the dough that you are after. A doubling of the volume of the dough seems to be acceptable to most people but, as Norma has shown, it can be more than that. It can also be less, if desired. In theory, once you get the desired end results, you can manipulate them within a fairly wide range for future purposes. Where things can get difficult is where the temperatures during fermentation vary a lot. Even in my refrigerator, I see fairly wide swings in temperature as the door is opened and closed several times a day, things are added and removed, and even different locations in the refrigerator can have different temperatures. To the extent that you can control your cooler so that it operates at pretty much one temperature, so much the better.

Have a good time in Vegas.

Peter